If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-1125=0
a = 2; b = 10; c = -1125;
Δ = b2-4ac
Δ = 102-4·2·(-1125)
Δ = 9100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9100}=\sqrt{100*91}=\sqrt{100}*\sqrt{91}=10\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{91}}{2*2}=\frac{-10-10\sqrt{91}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{91}}{2*2}=\frac{-10+10\sqrt{91}}{4} $
| -103=2x-7x+5 | | 7x-3=-3-33 | | X+11=5-2x | | 20=0.35x+x | | 1.6x-2=3x^2 | | x×x=54 | | 6-5y=19 | | 90=9/q | | 2(x+34)–24=100 | | -4=8/s | | d/4-5=4 | | 20/0.8=x | | 5x-2=18 | | 20p-20=60 | | 2x+7=23 | | n/6=3 | | x^2+0.2x+1.01=0 | | -15x²-10=0 | | 3x/2+5=3x/2-1 | | 5k=45 | | 9m=27 | | 14q-2=16 | | 4x-25+x=2+3x-9 | | X+5.4=2.8x | | x-0.1x=57240 | | 3(m-8)=2m+10 | | -6x2+5x+21=0 | | 1/7h=2 | | 3x+2(x-9=12 | | x^2-50=24 | | 18y-8=16 | | _____x(-7)=77 |